Microstructure-Based, Multiscale Modeling for the Mechanical Behavior of Hydrated Fiber Networks

نویسندگان

  • Preethi L. Chandran
  • Triantafyllos Stylianopoulos
  • Victor H. Barocas
چکیده

A multiscale formulation is derived for the mechanics of a dilute fiber network microstructure, as occurs in in vitro reconstituted collagen gels, to accommodate the deterministic solution of a uniform-stress condition in the fiber network. The macroscale two-phase equations are derived based on the integral volume-averaging approach of the spatial averaging theorem, modified for the averaging volume to deform materially in the solid phase and thereby ensuring consistent network mass conservation. For low-Reynolds-number fiber-fluid interaction with no hydrodynamic interaction between fibers, the macroscale Darcy law arises naturally as a function of average fiber orientation and volume fraction, with no additional empirical specification. The macroscale equations are solved using finite element analysis with the averaging volumes centered at Gauss points of integration. The macroscale solid stress and fluid velocity are obtained by microscale deterministic solution of network and Stokesian mechanics within the averaging volume at each Gauss point, whereas the macroscale displacements and fluid pressure are solved as interpolated finite element field variables. The theory when applied to describe confined compression of collagen gels reproduced the strain-rate dependent behavior observed in poroelastic materials. The deformation of the averaging region and the reorientation of the collagen network in response to strain are also discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Upscaling Cement Paste Microstructure to Obtain the Fracture, Shear, and Elastic Concrete Mechanical LDPM Parameters

Modeling the complex behavior of concrete for a specific mixture is a challenging task, as it requires bridging the cement scale and the concrete scale. We describe a multiscale analysis procedure for the modeling of concrete structures, in which material properties at the macro scale are evaluated based on lower scales. Concrete may be viewed over a range of scale sizes, from the atomic scale ...

متن کامل

Investigation of Vacancy Defects on the Young’s Modulus of Carbon Nanotube Reinforced Composites in Axial Direction via a Multiscale Modeling Approach

In this article, the influence of various vacancy defects on the Young’s modulus of carbon nanotube (CNT) - reinforcement polymer composite in the axial direction is investigated via a structural model in ANSYS software. Their high strength can be affected by the presence of defects in the nanotubes used as reinforcements in practical nanocomposites. Molecular structural mechanics (MSM)/finite ...

متن کامل

Multiscale Evaluation of the Nonlinear Elastic Properties of Carbon Nanotubes Under Finite Deformation

This paper deals with the calculation of the elastic properties for single-walled carbon nanotubes (SWCNTs) under axial deformation and hydrostatic pressure using the atomistic-based continuum approach and the deformation mapping technique. A hyperelastic model based on the higher-order Cauchy-Born (HCB) rule being applicable at finite strains and accounting for the chirality and material nonli...

متن کامل

Dynamics of Macro–Nano Mechanical Systems; Fixed Interfacial Multiscale Method

The continuum based approaches don’t provide the correct physics in atomic scales. On the other hand, the molecular based approaches are limited by the length and simulated process time. As an attractive alternative, this paper proposes the Fixed Interfacial Multiscale Method (FIMM) for computationally and mathematically efficient modeling of solid structures. The approach is applicable to mult...

متن کامل

A FEM Multiscale Homogenization Procedure using Nanoindentation for High Performance Concrete

This paper aims to develop a numerical multiscale homogenization method for prediction of elasto-viscoplastic properties of a high performance concrete (HPC). The homogenization procedure is separated into two-levels according to the microstructure of the HPC: the mortar or matrix level and the concrete level. The elasto-viscoplastic behavior of individual microstructural phases of the matrix a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Multiscale Modeling & Simulation

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2008